

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA COORDENAÇÃO DE CONCURSOS - CCONC Edital 04/2023 - Professor Efetivo

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS Com massas atômicas referidas ao isótopo 12 do Carbono

1										•							18
1 H 1,01	2	_										13	14	15	16	17	2 He 4,00
3 Li 6,94	4 Be _{9,01}											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,8	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (99)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série dos Lantanídios	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (233)	88 Ra (226)	89-103 Série dos Actinídios	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 Uun (267)				•	L	<u> </u>		1 ()

Série dos Lantanídios

Número Atômico

Símbolo

Massa Atômica

() Nº de massa do isótopo mais estável

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
139	140	141	144	(147)	150	152	157	159	163	165	167	169	173	175

Série dos Actinídios

89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
(227)	(232)	(231)	(238)	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(253)	(256)	(253)	(257)

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA COORDENAÇÃO DE CONCURSOS – CCONC Edital 04/2023 – Professor Efetivo

OBSERVAÇÕES:

- 1) Nas questões de 1 a 4, somente serão aceitas as resoluções contendo os cálculos na folha de resposta.
- 2) As questões devem ser respondidas em ordem numérica.
- 3) A questão subsequente deve ser respondida em folha separada da questão anterior.
- 4) Não é permitido o uso de calculadora.

DADOS PARA A PROVA:

 $F=96500 \text{ C mol}^{-1}$ R = 8,31 J.mol $^{-1}$.K $^{-1}$ H $_2$ SO $_3$, K $_{a1}$ =1,7 x 10 $^{-2}$, K $_{a2}$ =6,4 x 10 $^{-8}$, a 25 $^{\circ}$ C K $_{w}$ =1,0 x 10 $^{-14}$ a 25 $^{\circ}$ C Ln X = 2,3 log X Log 2 = 0,301

Log 0.623 = -0.206

 $\pi = 3.14$

PROVA DE QUÍMICA.

Questão 1 (2,0 pontos).

A partir da retirada de uma alíquota de 2,5 mL de ácido nítrico concentrado 70 % PA (pureza analítica) e densidade de 1,44 g/cm³ foi preparada uma solução aquosa de 50,00 mL de ácido nítrico. Todo o ácido da solução foi consumido ao reagir com uma amostra de 1,26 g que contém cobre metálico. Pressupondo que a reação entre o ácido e cobre foi completa, e que somente cobre metálico presente na amostra reagiu, nas condições de 25 °C e 1 atm, determine:

- 1.1) (1,0 ponto) A porcentagem de cobre na amostra;
- 1.2) (1,0 ponto) O volume de gás formado considerando um gás ideal.

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA COORDENAÇÃO DE CONCURSOS – CCONC Edital 04/2023 – Professor Efetivo

Questão 2 (2,0 pontos).

Um sal é formado a partir da adição de hidróxido de sódio e ácido HA ($K_a = 1 \times 10^{-6}$), e posteriormente ele é isolado. A partir deste sal foi preparado uma solução de 16.000 μ L contendo 16 mmol do mesmo. A esta solução foi adicionada 4 mL com concentração de 2 mol.L⁻¹ de ácido clorídrico.

- 2.1) (1,0 ponto) Calcule o pH da solução que continha o sal;
- 2.2) (1,0 ponto) Calcule o pH da mistura resultante das soluções.

Questão 3 (2,0 pontos).

Sobre o gás hélio e a substância química água seguem algumas questões:

- 3.1) (0,6 pontos) Utilize o valor da constante "b" de Van Der Waals do He ($b_{He} = 0,0238$ L.mol⁻¹) para estimar o raio r de um átomo de He. Expresse sua resposta em picometro, deixando indicado a raiz com os dados encontrados na própria raiz. Exemplo: $r = \sqrt[x]{a}$
- 3.2) (0,6 pontos) Uma amostra de 2,0 mol de He se expande isotermicamente a 22 °C, de 22,8 dm³ a até 45,6 dm³ reversivelmente. Calcule a quantidade de trabalho e calor.
- 3.3) (0,8 pontos) Sabendo que a pressão de vapor da água pura a 22 °C é 19,83 mmHg e a 30 °C é 31,82 mmHg, calcule a variação de entalpia por mol do processo de vaporização.

Questão 4 (2,0 pontos).

Considere a reação redox ocorrendo em um sistema eletroquímico com dois eletrodos de platina, a 25 °C e a 1 atm, de acordo com a notação abaixo.

Pt |
$$H_2SO_{3 (aq)} (0,001 \text{ mol } L^{-1})$$
, $SO_4^{2^-}_{(aq)} (0,02 \text{ mol } L^{-1})$ | $V(OH)_4^+_{(aq)} (0,01 \text{ mol } L^{-1})$, $VO^{2^+}_{(aq)} (0,01 \text{ mol } L^{-1})$ | Pt

Potenciais padrões de redução em solução aquosa:

$$\begin{array}{ll} V(OH)_{4}{}^{+} + 2H^{+} + \bar{e} \longrightarrow VO^{2+} + 3H_{2}O & E^{0} = +1,00 \ V \ versus \ EPH \\ SO_{4}{}^{2-} + 4H^{+} + 2\bar{e} \longrightarrow H_{2}SO_{3} + H_{2}O & E^{0} = +0,17 \ V \ versus \ EPH \end{array}$$

- 4.1) (1,0 ponto) Calcule o ΔG^0 da reação, e calcule o valor que mais se aproxima da constante de equilíbrio (K) da reação.
- 4.2) (1,0 ponto) Calcule o ΔG da reação considerando o momento em que as concentrações das espécies químicas presentes são as indicadas na notação descrita acima.

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA COORDENAÇÃO DE CONCURSOS – CCONC Edital 04/2023 – Professor Efetivo

Questão 5 (2,0 pontos).

Os itens a seguir são referentes à corrosão eletrolítica e seletiva. Faça o que se pede nos enunciados:

- 5.1) (1,0 ponto) Quais fatores influenciam na taxa de corrosão, resultante das correntes de interferência, na corrosão eletrolítica?
- 5.2) (1,0 ponto) Discorra sobre corrosão seletiva.