

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

INSTRUÇÕES ADICIONAIS

- Cada questão possui suas próprias folhas para resposta ao longo do caderno de prova. Por isso, resoluções de questões fora dos locais ou espaços designados serão desconsideradas.
- As folhas de rascunho estão disponibilizadas no final deste caderno de prova.

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Questão 1

A Figura 1 apresenta um circuito elétrico puramente resistivo, alimentado por uma fonte de corrente contínua (CC).

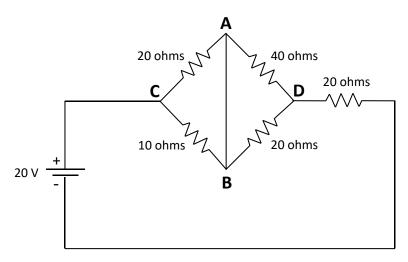


Figura 1 – Circuito elétrico CC

Com base neste circuito (Figura 1):

- a) **(1,0 pontos)** Determine as correntes elétricas nos trechos entre os pontos A-B, C-A e B-D, em ampères.
- b) **(0,5 pontos)** Substitua tudo, exceto o resistor de 20 ohms do trecho C-A, pelo seu circuito equivalente de Thévenin. Com o circuito equivalente obtido, recalcule a corrente no trecho C-A.
- c) **(0,5 pontos)** Substitua tudo, exceto o resistor de 20 ohms do trecho B-D, pelo seu circuito equivalente de Thévenin. Com o circuito equivalente obtido, recalcule a corrente no trecho B-D.

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Questão 2

Considere um transformador monofásico de 20 kVA, 8000/240 V e 60 Hz, cujos dados dos ensaios a vazio e curto-circuito estão disponíveis na Tabela 1.

Tabela 1 – Ensaios a vazio e curto-circuito do transformador

Ensaio a Vazio	Ensaio de Curto-Circuito
V ₀ = 240 V	V _{CC} = 489 V
$I_0 = 7,133 A$	$I_{CC} = 2,5 A$
$P_0 = 400 \text{ W}$	$P_{CC} = 240 \text{ W}$

- a) **(0,4 pontos)** Descreva em qual dos lados do transformador, alta tensão (AT) ou baixa tensão (BT), os ensaios a vazio e curto-circuito devem ser realizados na prática, assim como as motivações para tais escolhas.
- b) (0,4 pontos) Determine todos os parâmetros deste transformador em função dos ensaios a vazio e curto-circuito da Tabela 1. Desenhe o circuito equivalente com todos os parâmetros obtidos referidos ao lado de BT.
- c) **(0,4 pontos)** Considere que este transformador atende seu carregamento nominal com uma carga de fator de potência igual a 0,8 (atrasado). Determine a eficiência aproximada do transformador para esta condição operativa.
- d) **(0,4 pontos)** Determine os valores de impedância base, tensão base, corrente base e potência base para o transformador supracitado. Para isso, considere os seus valores nominais.
- e) **(0,4 pontos)** Considere que três transformadores monofásicos iguais ao do enunciado são utilizados para compor um banco trifásico Y-Δ. Determine as características nominais do banco trifásico (tensão e potência), a defasagem angular estabelecida entre as tensões AT e BT (em módulo), assim como a sua relação de transformação.

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Questão 3

Considere um gerador síncrono trifásico de polos lisos, 10 MVA, 14 kV, 60 Hz, conectado em estrela. Na Figura 2, encontram-se as curvas características de circuito aberto (CCA) e de curto-circuito (CCC) desta máquina síncrona.

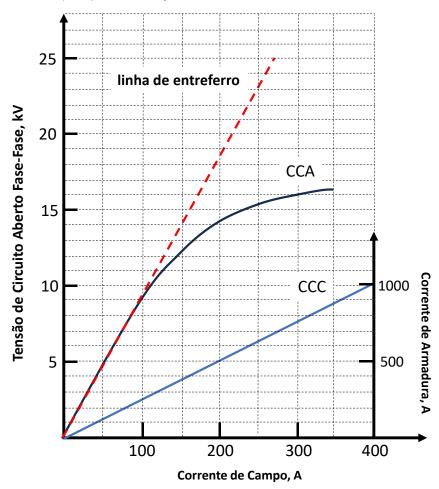


Figura 2 – Curvas características de circuito aberto (CCA) e de curto-circuito (CCC) do gerador síncrono

- a) **(0,4 pontos)** Esboce a estrutura de uma máquina síncrona trifásica elementar, mostrando a disposição de seus enrolamentos de estator e rotor. Responda também onde ficam localizados os seus enrolamentos de campo e armadura.
- b) **(0,4 pontos)** Calcule os valores das reatâncias síncronas não-saturada e saturada (para condição de tensão nominal) deste gerador, em ohms e em por unidade (pu).
- c) (0,4 pontos) Considerando que o gerador supracitado possui 10 polos, determine em qual rotação o seu eixo deve girar para produzir a frequência de 60 Hz. Apresente o resultado em rotações por minuto, e em rad/s. Determine também quantos ciclos da tensão produzida são completos para cada ciclo de rotação mecânica realizada pelo eixo do rotor.

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Questão 3 (continuação)

- d) **(0,4 pontos)** Considere que uma carga indutiva está conectada nos terminais deste gerador. Represente de forma qualitativa o diagrama fasorial completo para a máquina síncrona operando nesta condição de carregamento. Indique coerentemente os seguintes componentes: Corrente de armadura (I_a); Tensão interna gerada (E_f); Tensão terminal (V_t); Ângulo de carga da máquina síncrona (δ); Ângulo de fase da corrente (θ).
- e) **(0,4 pontos)** Quando este gerador é conectado a um barramento infinito com tensão fase-neutro igual a 8,08 kV e entrega sua potência nominal a um fator de potência de 0,8 atrasado, sua tensão interna gerada por fase é igual a 13,34 kV. Desconsiderando-se todas as perdas da máquina, determine o seu ângulo de carga para este cenário, assim como a máxima potência que este gerador pode entregar ao barramento infinito.

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Questão 4

Considere um determinado sistema elétrico de potência composto por quatro barras e quatro ramos, conforme descrição nas Tabela 2 e Tabela 3.

Tabela 2 – Dados de linha do sistema de potência

Linhas	Impedância série	b_{shunt} (total)	1:tap
1 – 2	y_{12}	b_{12}	-
1-3	y_{13}	-	-
2 – 3	y_{23}	-	-
2 – 4	${\mathcal Y}_{24}$	-	1:t

Tabela 3 – Dados de barra do sistema de potência

Barra	Р	Q	V	fase
1	-	-	V_1	$ heta_1$
2	P_2	Q_2	-	-
3	P_3	-	V_3	-
4	P_4	Q_4	-	-

Considerando, ainda, a solução do Fluxo de Carga pelo método de Newton-Raphson, pede-se:

- a) **(0,4 pontos)** Desenhe o diagrama unifilar do sistema elétrico de potência representado pelas tabelas 2 e 3, acima.
- b) **(0,4 pontos)** A matriz Y_{barra} do sistema.
- c) **(0,4 pontos)** A montagem do sistema de equações do subsistema 1, ou seja, $\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = J \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$, sendo J a matriz jacobiana. Na matriz jacobiana, indicar apenas as derivadas parciais envolvidas.
- d) **(0,4 pontos)** A classificação das quatro barras do sistema, e suas descrições, tendo em vista os dados conhecidos de cada uma delas.
- e) (0,4 pontos) Indicar as equações que serão calculadas no subsistema 2.

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Questão 5

O circuito na Figura 3 é um conversor *boost* (elevador), com tensão de entrada V_s = 5 V. A tensão média de saída é V_o = 15 V e a corrente de média da carga I_o = 0,5 A, em uma frequência de chaveamento de 25 kHz. Para L = 150 μ H e C = 220 μ F, em regime permanente, faça o que se pede:

- a) (1,0 ponto) Descreva como é o funcionamento de um conversor elevador.
- b) **(0,5 pontos)** Determine o ciclo de trabalho D, dado pela razão do tempo em que o MOSFET G está conduzindo pelo seu período de chaveamento, para que o conversor entregue a tensão e a corrente enunciadas.
- c) **(0,5 pontos)** Assumindo que o circuito não tem perdas nas chaves (MOSFET e diodo), determine a corrente média da fonte V_s.

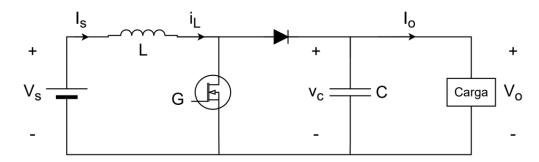


Figura 3 – Circuito de um conversor boost.

		7
		- 1

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 8 de 34

l		

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 9 de 34
Página 9 de 34

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 10 de 34

1			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 11 de 34

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 12 de 34

1			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 13 de 34

l		

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 14 de 34
.0 =

1			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 15 de 34

I		

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 16 de 34

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 17 de 34

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 18 de 34
ragilia 10 ue 34

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 19 de 34

1			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 20 de 34

1			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 21 de 34

		7
		- 1

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 22 de 34

l .			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 23 de 34

I			

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

Página 24 de 34

П
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

П
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO

CAMPUS NOVA FRIBURGO – ENGENHARIA ELÉTRICA

FOLHA DE RASCUNHO